If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3n^2+303n-16200=0
a = 3; b = 303; c = -16200;
Δ = b2-4ac
Δ = 3032-4·3·(-16200)
Δ = 286209
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{286209}=\sqrt{441*649}=\sqrt{441}*\sqrt{649}=21\sqrt{649}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(303)-21\sqrt{649}}{2*3}=\frac{-303-21\sqrt{649}}{6} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(303)+21\sqrt{649}}{2*3}=\frac{-303+21\sqrt{649}}{6} $
| -9/15x=10/15 | | 20-3(x-3)-2=11x-1 | | 13=72-k | | x3+1x3−x2+x⋅10x−30x−30= | | |2x-1/3|=1 | | 12x+2=10x+42 | | (1)1/4=a=3/8 | | x-16=4x-5 | | 11/4=a=3/8 | | 100+12x=700 | | 10x-2=9+9× | | 36-x^2=0/ | | 5x+x2=100 | | X2=10x-24 | | 336-x^2=0 | | (8+2)x=8x+2x | | 3/6=u/4 | | .5x+4=2/3x | | R/2+4m=24 | | 4x-5=2x=7 | | 5+x+7x=53 | | w/3.75=3 | | 4(x–5)=18 | | 2x/54=x | | 4a/2a=2 | | 40x+15x=1950 | | -8(1-7x)+4=-8-6x | | 4z+9+(2z)=129 | | -5+5y=-25 | | 6x-12=11x | | X=3x+.5 | | 2/x=5/17 |